
By BigDumbDinosaur

Copyright ©1994-2013 by BCS Technology Limited

All Rights Reserved

))

Permission is hereby granted to use, copy, modify and distribute this software, either in library form or as part of a complete package. BCS Technology

Limited requires that a copyright acknowledgment worded as follows must be present in any documentation provided with the package of which all

or any part of this library is a component:

Portions of this software copyright ©1994-2013 by BCS Technology Limited. All rights reserved.

The above copyright acknowledgment must also appear at least once in the source code of the package into which this library has been integrated.

Redistribution of this software in any form must be at no charge to the end user. This code or any part thereof, including but not limited to any

derivation, MAY NOT be incorporated into any package intended for sale, unless written permission to do so has been granted by BCS

Technology Limited. Please visit http://bcstechnology.net for information on how to contact us to obtain such permission.

THERE IS NO WARRANTY OF ANY KIND WITH THIS SOFTWARE. While it is believed that all code will perform as described, the user assumes

all risk in connection with the incorporation of this software into any system. If this provision is not acceptable to you do not use this software and

immediately delete it from your system.

))

W65C816S STRING MANIPULATION LIBRARY V2 is a collection of 16-bit W65C816S native
mode assembly language subroutines that perform a variety of useful character string operations.
All functions are designed to take advantage of the W65C816S microprocessor’s enhanced
features and to facilitate integration with other native mode 65C816 software. No predefined
storage allocation is required for any library function.

The following functions are implemented:

! strcat Catenate (concatenate) two strings.

! strchr Find a character in a string.

! strcmp Compare two strings.

! strcpy Copy a string to another string.

! strdel Delete a substring from a string.

! strins Insert a substring into a string.

! strlen Return the length of a string.

! strpat Compare two strings using wildcard pattern matching.

! strprn Print a character string.

! strstr Find a substring in a string.

! strsub Copy a substring from a string.

Please carefully read this document in its entirely before attempting to use any of this software.

W65C816S STRING MANIPULATION LIBRARY V2

Page 2 of 12

DISTRIBUTION FILES

This distribution contains the following files:

! lib.str.65s

 lib.str.65s contains the assembly language source code that implements the various
functions in the library. All source code was written and assembled in Michal Kowalski’s 6502
simulator, version 1.2.12, with simulation set to the 65C02 mode. The binaries were tested
on a W65C816S single-board computer running native mode firmware and are believed to be
bug-free. Adaptation of the source code to other assemblers should not be too difficult.

Parts or all of lib.str.65s must be INCLUDEd in any program that is to use string functions.
As each function is a stand-alone subroutine, only the functions that are to be used need to
be INCLUDEd. Other requirements may exist to utilize some functions. They will be
mentioned as necessary.

! 816macs.65s

 816macs.65s contains macroinstructions that synthesize W65C816S-specific instructions.
The Kowalski assembler only knows the NMOS and Rockwell 65C02 instructions. Therefore,
816macs.65s must be INCLUDEd in any program that is to use the string manipulation library,
and must be INCLUDEd before any library function. Refer to comments in 816macs.65s to
see how these macros may be utilized in your own W65C816S native mode programs.

! stringmacs.65s

 stringmacs.65s contains macros that may be used in your programs to invoke the various
functions supported by lib.str.65s, via a higher level syntax than what is required to
directly call the library functions in pure assembly language. These macros use a syntax that
resembles that of the comparable string manipulation functions found in ANSI C. Use is
optional but is recommended in programs that make a lot of library calls.

Page 3 of 12

The description of PEA in the Eyes and Lichty 65C816 assembly language programming manual portrays the
†

instruction as having an absolute addressing mode. Technically this is incorrect, as the microprocessor treats PEA as an

immediate mode instruction—PEA ’s data is the operand itself, and that data can be anything that will resolve to 16 bits.

Therefore, PEA instructions will be shown as using immediate mode addressing in all programming examples to highlight

this characteristic.

GENERAL PROGRAMMING INFORMATION

In order to successfully integrate this string manipulation library in your programs you need to be
aware of some programming requirements and considerations:

! This library uses the ANSI C convention of defining a character string—hereafter referred to
as a string—as a sequence of non-null bytes that has been terminated by a null ($00) byte.
For example, the string ABCDE would appear in a memory dump as 41 42 43 44 45 00.
A string may consist solely of a terminator, in which case it will be a null string.

! The maximum allowable string length is 32,767 characters plus the terminator. All functions
will check string length and return an error if this length limit is violated.

! A string cannot span (overlap) memory banks. For example, the following string would not be
acceptable to any library function:

01FFF0 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 00

At byte value $51, the absolute address would be $020000, meaning the end of the string
would be in bank $02, constituting bank overlap.

! The data bank defined in the microprocessor’s DB (data bank) register is the bank in which
string processing will occur. If necessary, your program should set a different bank before
calling a library function. It is possible, though not trivial, to modify the library functions to
accept data bank parameters, which would allow the string(s) being processed to be in
alternate data banks.

! All functions expect 16-bit pointers to data, “data” being defined as a character, string or little-
endian 16-bit integer value. In narrative text, a word such as STRING1 refers to a string at the
location pointed to by the address represented by the symbol string1. In macro and
assembly language expositions, that string1 is a pointer is implied.

! Pointers are pushed to the stack prior to the function call and must be of the correct number
and in the correct order. At least one parameter is required for every call: a pointer to a string.
Other pointers may be required for a second string and/or numeric data. The general
assembly language form of a function call, as implemented in the macros, is:

pea #ptr3 ;3rd pointer, if required†

pea #ptr2 ;2nd pointer, if required
pea #ptr1 ;string pointer (required)
jsr function ;call function
bcs error ;error occurred

Page 4 of 12

Note that parameters are pushed in the opposite order from that shown in the string
macros—the macros will take care of this for you if you choose to use them. The called
function will clear the parameters from the stack before returning to the calling program,
eliminating the need for the calling function to do so.

WARNING! Pushing an incorrect number of parameters or parameters of the wrong
size prior to calling a function will cause the hardware stack to go out of
balance when the function exits, possibly resulting in system fatality.

Although the above function call example shows the use of PEA to push parameters (which is
what the macros do), any instruction or sequence of instructions that can push a word (16-bit
value) is acceptable, for example, PEI or even PER. Or, you can set a register to 16 bits, load
it with the pointer and then push it. Use the method that is most convenient and efficient.

Most functions return with the accumulator and index registers as they were when the function
was called. A few functions will return data in one or more registers. See the details for each
function.

! All function calls must be tested for errors upon return. If an error occurs the function will
return with the carry bit set in the microprocessor’s status register (SR). Other SR bits may be
manipulated to indicate the nature of the error. Error types may vary from function to function.
If a function that normally returns data in one or more registers exits with an error, all registers
will be as they were when the function was called. Refer to each function for details.

! The strcat and strins functions have the effect of expanding the target string (STRING1),
which could lead to a buffer overflow if STRING1 has not been allocated sufficient memory.
Similarly, a buffer overflow could occur with the strcpy and strsub functions if the string
being copied is longer than the space allocated to the target string. Library functions are not
able to determine if a string will fit into a particular location—it is the calling function’s
responsibility to make that determination.

! All library functions use the 65C816’s MVN and/or MVP instructions to copy data. Unlike other
65C816 instructions, MVN and MVP can be interrupted as they execute, which creates the
potential for inadvertent disruption by an improperly designed interrupt service routine.

As these instructions execute they maintain state information in all three registers. Therefore,
it is essential that the interrupt service routines on the system on which string library functions
are to be run fully preserve the microprocessor state so that an interrupted MVN or MVP
instruction can be restarted without error. Succinctly stated, any register that is used by the
interrupt service routine must be exactly restored prior to returning to the interrupted task.

WARNING! Failure to properly preserve the microprocessor’s state during interrupt
processing could cause wild write operations to subsequently occur and
depending on the design of the system, result in fatality.

Page 5 of 12

FUNCTION DESCRIPTIONS

In the following text, each function description will start with the macro call syntax for the
function—macro names are all lower case, explain what the function does, describe any special
processing cases that must be considered, and then finish with the assembly language call syntax
used by the function. As previously noted, use of the macros in stringmacs.65s, which have
the same names as the functions they invoke, is recommended for programing convenience and
to assist in minimizing the likelihood of introducing bugs into your software.

! strcat string1,string2

strcat copies STRING2 to the end of STRING1, with the first character of STRING2
overwriting the terminator of STRING1. Functionally, the operation can be characterized as
STRING1=STRING1+STRING2. STRING2 is not affected by this function unless it shares part
of the address space of STRING1, in which case behavior may be undefined. If string1 and
string2 point to the same string the result will be the same as if A$=A$+A$ in BASIC were
executed.

Assembly language syntax:

pea #s2ptr ;STRING2's pointer
pea #s1ptr ;STRING1's pointer
jsr strcat ;catenate STRING2 to STRING1
bcs error

error beq bankovr ;bank overlap error
bmi toolong ;string too long error

Exit registers: .A: entry value
 .B: entry value
 .X: entry value
 .Y: entry value

NOTE: This function uses self-modifying code.

! strchr string,char

strchr scans STRING for the first occurrence of the character CHAR and if found, returns a
pointer to CHAR’s position in STRING, as well as the number of instances of CHAR in STRING.
Note that char does not point to a string; it points to a single character in memory.

Assembly language syntax:

pea #cptr ;CHAR’s pointer
pea #sptr ;STRING’s pointer
jsr strchr ;scan STRING for CHAR

Page 6 of 12

bcs error
beq notfound ;CHAR not present in STRING

error beq bankovr ;bank overlap error
bmi toolong ;string too long

Exit registers: .A: entry value
 .B: entry value
 .X: 16-bit pointer to CHAR in STRING if found
 .Y: instances of CHAR in STRING

If CHAR is not present in STRING, .X and .Y will return $0000.

! strcmp string1,string2

strcmp compares STRING2 to STRING1 and returns the results via the microprocessor’s
status register. Refer to the following table:

Z N Meaning
———————————————————————
1 x STRING2 = STRING1
0 0 STRING2 > STRING1
0 1 STRING2 < STRING1
———————————————————————

In the above table, Z and N respectively refer to the zero and sign overflow bits in the status
register. < means "less-than", > means "greater-than" and x means "don't care." Comparison
relationships are based upon the binary values of the individual bytes in the strings. In the
event there is a difference in string lengths the comparison result will be determined by the
length of the shorter string. For example, if STRING1="abcd123" and STRING2="abcd12"
then STRING2 < STRING1. Null strings are considered equal.

Assembly language syntax:

pea #s2ptr ;STRING2's pointer
pea #s1ptr ;STRING1's pointer
jsr strcmp ;compare STRING2 to STRING1
bcs error

;
beq equal ;STRING2 = STRING1
bmi lesser ;STRING2 < STRING1
bpl greater ;STRING2 > STRING1

;
error bmi toolong ;string too long

bpl bnkovr ;bank overlap

Page 7 of 12

Exit registers: .A: entry value
 .B: entry value
 .X: entry value
 .Y: entry value

! strcpy string1,string2

strcpy copies STRING2 to STRING1, overwriting the previous content of STRING1. An error
will occur if string1 and string2 point to the same string. Behavior is undefined if
string2 points to an address within the bounds of STRING1.

Assembly language syntax:

pea #s2ptr ;STRING2's pointer
pea #s1ptr ;STRING1's pointer
jsr strcpy ;copy STRING2 to STRING1
bcs error

error beq bnkovr ;bank overlap error
bmi toolong ;string too long error
bvs s2_is_s1 ;string2 points to STRING1

Exit registers: .A: entry value
 .B: entry value
 .X: entry value
 .Y: entry value

NOTE: This function uses self-modifying code.

! strdel string,i,n

strdel deletes N characters from STRING starting at character I in STRING, contracting
STRING’s length N characters. I is zero-based and must be less than the length of STRING.
If the expression I+N equals or exceeds the length of STRING, STRING will be truncated to
I characters. If N=0 then STRING will not be modified—no error will occur in this case.

Assembly language syntax:

pea #nptr ;N’s pointer
pea #iptr ;I's pointer
pea #sptr ;STRING's pointer
jsr strcpy ;delete characters from STRING
bcs error

error beq bnkovr ;bank overlap error
bmi toolong ;string too long error

Page 8 of 12

bvs badindex ;index exceeds STRING’s length

Exit registers: .A: entry value
 .B: entry value
 .X: entry value
 .Y: entry value

NOTE: This function uses self-modifying code.

! strins string1,string2,i

strins inserts STRING2 into STRING1 at character position I, causing STRING1 to expand
by the length of STRING2. I is zero-based and must be less than STRING1's length. The
combined length of STRING1 and STRING2 cannot exceed 32,767 characters.

Assembly language syntax:

pea #iptr ;I's pointer
pea #s2ptr ;STRING2's pointer
pea #s1ptr ;STRING1's pointer
jsr strins ;insert STRING2 into STRING
bcs error

error beq bnkovr ;bank overlap error
bmi toolong ;string too long error
bvs badindex ;index exceeds STRING1’s length

Exit registers: .A: entry value
 .B: entry value
 .X: entry value
 .Y: entry value

NOTE: This function uses self-modifying code.

! strlen string

strlen returns the length of STRING, not including the terminator byte.

Assembly language syntax:

pea #sptr ;STRING's pointer
jsr strlen ;determine STRING's length
bcs error

error beq bnkovr ;bank overlap error
bmi toolong ;string too long error

Page 9 of 12

Exit registers: .C: 16 bits: STRING’s length
 .X: entry value
 .Y: entry value

If there is no error and STRING is null, $0000 will be returned in .C.

! strpat string,pattern

strpat compares PATTERN to STRING and returns the Boolean results LIKE or UNLIKE.
The presence of the metacharacters ? (character wildcard) and * (string wildcard) in PATTERN
will affect the outcome of the comparison. Pattern matching behaves as follows:

? When present in PATTERN, a character wildcard will match exactly one character in

STRING. For example, fo?bar will match foobar, foObar, forbar, etc. ???? will
match STRING if STRING is exactly four characters in length, with the characters being
anything, including ????.

* When present in PATTERN, a string wildcard will match a sequence of characters in
STRING. For example, ab* will match any STRING that begins with ab, such as abcde
or abracadabra. *yz will match any STRING that ends with yz, such as abcxyz.
ab*lm*yz will produce a match if STRING begins with ab, has lm anywhere in the
middle, and ends with yz. For example, ab*lm*yz will match with the lower case Roman
alphabet, as would *lm*.

Combinations of wildcards in PATTERN may be used in various ways. For example, ?* will
match any non-null STRING. Similarly, ???* will match any STRING that is three or more
characters in length, as would *???. The somewhat strange PATTERN ???*??? would match
any STRING in which at least six characters are present.

The special case of * being the only character in PATTERN will match with any STRING, even
if null. Multiple contiguous * characters in PATTERN, such as ***, are treated as a single
instance of *. Hence, ab***yz would be logically reduced to ab*yz.

If PATTERN has no wildcards strpat will act in a similar fashion to the strcmp function, but
more slowly and without the “lesser-than” and “greater-than” results.

The comparison result is indicated by the microprocessor’s Z flag as follows:

Z Meaning
————————————————————————
1 PATTERN LIKE STRING
0 PATTERN UNLIKE STRING
————————————————————————

Behavior is undefined if pattern points to anywhere within STRING's space..

Page 10 of 12

Assembly language syntax:

pea #pptr ;PATTERN's pointer
pea #sptr ;STRING's pointer
jsr strpat ;compare PATTERN to STRING
bcs error
beq like ;PATTERN LIKE STRING
bne notequal ;PATTERN UNLIKE STRING

error bmi toolong ;string too long
bpl bnkovr ;bank overlap

Exit registers: .A: entry value
 .B: entry value
 .X: entry value
 .Y: entry value

The complexity and length of PATTERN greatly affects strpat’s performance.

! strprn string

strprn prints STRING to an output device whose driver API entry point is defined by the
symbol putcha. Output continues unabated until STRING’s terminator has been reached.
The current version of strprn does not interpret anything in STRING. There are “hook points”
in the code at which you may add features to perform interpretation, such as processing
escape sequences or metacharacters. Refer to the source code for details.

strprn operates by making one subroutine call to putcha for each character in STRING, the
character being made available to putcha in the eight bit accumulator. putcha is expected
to block until it is able to process the character, and is also expected to preserve all registers,
including DB. If these requirements are not met strprn’s behavior will be undefined. You
may need to modify strprn to suit the requirements of your system’s firmware or operating
system.

Assembly language syntax:

pea #sptr ;STRING's pointer
jsr strprn ;print STRING
bcs error

error bmi toolong ;string too long
bpl bnkovr ;bank overlap

Exit registers: .A: entry value
 .B: entry value
 .X: entry value
 .Y: entry value

Page 11 of 12

! strstr string1,string2

strstr returns a pointer to the first occurrence of STRING2 in STRING1 or a null pointer if
STRING2 is not present in STRING1. Although it is possible to use strstr to locate a single
character within STRING1 (STRING2 would be a single character plus a null), the strchr
function is substantially faster in processing such a search and should be used for that
purpose when practical.

Assembly language syntax:

pea #s2ptr ;STRING2's pointer
pea #s1ptr ;STRING1's pointer
jsr strstr ;find STRING2 in STRING1
bcs error
beq notfound ;STRING2 not in STRING1

error bmi toolong ;string too long
bpl bnkovr ;bank overlap

Exit registers: .A: entry value
 .B: entry value
 .X: 16 bits: pointer to STRING2 in STRING1
 .Y: 16 bits: STRING2's length

! strsub string1,string2,i,n

strsub copies N characters from STRING1 to STRING2, starting at index I, overwriting
STRING2. I is zero-based and cannot be greater than or equal to the length of STRING1. If
I+N is greater than or equal to STRING1's length all characters in STRING1, starting at I, will
be copied to STRING2. If N=0 no copying will occur and STRING1 will not be changed in any
way. Results are undefined if string2 points to anywhere within STRING1's space.

Assembly language syntax:

pea #nptr ;N’s pointer
pea #iptr ;I’s pointer
pea #s2ptr ;STRING2's pointer
pea #s1ptr ;STRING1's pointer
jsr strsub ;copy substring from STRING1 to STRING2
bcs error

error bvs badindex ;index exceeds string length
bmi toolong ;string too long
beq bnkovr ;bank overlap
bne s2_is_s1 ;string2 points to STRING1

Page 12 of 12

Exit registers: .A: entry value
 .B: entry value
 .X: entry value
 .Y: entry value

NOTE: This function uses self-modifying code.

BDD—2013/10

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12

